Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 149: 105973, 2022 10.
Article in English | MEDLINE | ID: mdl-36099861

ABSTRACT

In an active motor unit (MU), the time intervals between the firings of its muscle fibers vary across successive MU activations. This variability is called jitter and is increased in pathological processes that affect the neuromuscular junctions or terminal axonal segments of MUs. Traditionally, jitter has been measured using single fiber electrodes (SFEs) and a difficult and subjective manual technique. SFEs are expensive and reused, implying a potential risk of patient infection; so, they are being gradually substituted by safer, disposable, concentric needle electrodes (CNEs). As CNEs are larger, voltage contributions from individual fibers of a MU are more difficult to detect, making jitter measurement more difficult. This paper presents an automatic method to estimate jitter from trains of motor unit potentials (MUPs), for both SFE and CNE records. For a MUP train, segments of MUPs generated by single muscle fibers (SF MUP segments) are found and jitter is measured between pairs of these segments. Segments whose estimated jitter values are not reliable, according to several SF MUP segment characteristics, are excluded. The method has been tested in several simulation studies that use mathematical models of muscle fiber potentials. The results are very satisfactory in terms of jitter estimation error (less than 10% in most of the cases studied) and mean number of valid jitter estimates obtained per simulated train (greater than 1.0 in many of the cases and less than 0.5 only in the most complicated). A preliminary study with real signals was also performed, using 19 MUP trains from 3 neuropathic patients. Jitter measurements obtained by the automatic method were compared with those extracted from a commercial system (Keypoint) and the edition and supervision of an expert electromyographer. From these measurements 63% were taken from equivalent interval pair sites within the time span of the MUP trains and, as such, were considered as compatible measurements. Differences in jitter of these compatible measurements were very low (mean value of 1.3 µs, mean of absolute differences of 2.97 µs, 25% and 75% percentile intervals of -0.85 and 3.82 µs, respectively). Although new tests with larger number of real recordings are still required, the method seems promising for clinical practice.


Subject(s)
Muscle Contraction , Neuromuscular Junction , Electromyography/methods , Humans , Muscle Contraction/physiology , Muscle Fibers, Skeletal , Needles , Neuromuscular Junction/physiology
3.
Clin Neurophysiol ; 132(5): 1089-1104, 2021 05.
Article in English | MEDLINE | ID: mdl-33774377

ABSTRACT

OBJECTIVE: Describe and evaluate the concepts of near fiber electromyography (NFEMG), the features used, including near fiber motor unit potential (NFMUP) duration and dispersion, which relate to motor unit distal axonal branch and muscle fiber conduction time dispersion, and NFMUP segment jitter, a new measure of the temporal variability of neuromuscular junction transmission (NMJ), and axonal branch and muscle fibre conduction for the near fibres (i.e. NF jitter), and the methods for obtaining their values. METHODS: Trains of high-pass filtered motor unit potentials (MUPs) (i.e. NFMUP trains) were extracted from needle-detected EMG signals to assess changes in motor unit (MU) morphology and electrophysiology caused by neuromuscular disorders or ageing. Evaluations using simulated needle-detected EMG data were completed and example human data are presented. RESULTS: NFEMG feature values can be used to detect axonal sprouting, conduction slowing and NMJ transmission delay as well as changes in MU fiber diameter variability, and NF jitter. These changes can be detected prior to alterations of MU size or numbers. CONCLUSIONS: The evaluations clearly demonstrate and the example data support that NFMUP duration and dispersion reflect MU distal axonal branching, conduction slowing and NMJ transmission delay and/or MU fiber diameter variability and that NFMUP jiggle and segment jitter reflect NF jitter. SIGNIFICANCE: NFEMG can detect early changes in MU morphology and/or electrophysiology and has the potential to augment clinical diagnosis and tracking of neuromuscular disorders.


Subject(s)
Electromyography/methods , Muscle Fibers, Skeletal/physiology , Axons/physiology , Electromyography/instrumentation , Electromyography/standards , Evoked Potentials, Motor , Humans
4.
Acta Neurochir (Wien) ; 155(12): 2201-13, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24072425

ABSTRACT

BACKGROUND: Fluorescence-guided resection (FGR) using 5-aminolevulinic acid (5-ALA) exhibits a potential risk of permanent neurological deficits that can be minimized using intraoperative neurophysiological monitoring (IONM). We assessed the role of IONM in FGR surgery in patients harboring tumors in or near eloquent areas. METHODS: IONM and FGR surgeries were performed on 34 patients (49.8 ± 2.4 years) harbored malignant primary gliomas near eloquent cortical areas or semioval center. Different combinations of neurophysiological techniques were used depending on each patient. RESULTS: Gross total resection (GTR) was achieved in 66.7 % of the patients, mean 90.4 ± 3.7 % without neurological deficits. Resection in four patients was stopped by the occurrence of severe warning criteria despite the presence of fluorescence. Hemispheric transcranial electrical stimulation was safe and confident even in cortical surgery. Notably, a significant percentage of patients exhibited clinical improvement after the surgery. One week after surgery, only one patient worsened, and seven patients improved. At 3 months, 27.8 % of the patients improved, and the other patients maintained a similar status to their pre-surgery condition. Warning common criteria (amplitude reduction and/or latency increase) appeared in 68.2 and 50.0 % of patients during cortical or semioval surgery, respectively, with neither a false-negative nor a false-positive clinical outcome. Although 5-ALA exhibits phototoxicity, VEP did not induce any secondary effects in the visual system, including eyelids. CONCLUSIONS: IONM can be helpful during surgery to maximize the tumor resection, meanwhile help to avoid neurological deficits and, therefore, to improve the quality of life of these patients.


Subject(s)
Brain Neoplasms/pathology , Glioma/pathology , Intraoperative Neurophysiological Monitoring , Adult , Aged , Aminolevulinic Acid , Brain Mapping/methods , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Female , Glioma/diagnosis , Glioma/surgery , Humans , Intraoperative Neurophysiological Monitoring/methods , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...